conexus 2 AL

GGenerative Ontologies

Ryan Wisnesky | Conexus Al | ryan@conexus.com | Presented at Texas Data Day 2025



CONEXUS.COM

HOW ABOUT INSTEAD OF

- This is really a talk about “generative symbolic Al’, which | will motivate using CALLING IT "MATHEMATICS'
. . WE CALLED IT WHAT IT |&:
ontologies (part 1) and data-driven expert systems (part 2). “TALKING PRECISELY ABOUT

PRECISE THINGS

- What is an ontology?
- | claim an ontology is a sparse “deductive database”.

- What is a deductive database?
- | claim a deductive database is a regular database modulo logical rules.

- That is, a deductive database contains not just a finite set of data, but all the
(possibly infinite) data deducible from that data using a set of logical rules.

- This is an old idea — you don’t even need a computer to have an ontology
(e.g. the Dewey Decimal System for Libraries).

Ontologies
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BFO 2020 Participation Axioms

Participates in and has participant are inverse relations [xjr-1]
Vt,ab(participatesin(a,b,t) <»hasParticipant(b,a,t))
At every time a process exists it has a participant [trl-1]

Vp,t(instanceOf(p,process,t) — ¢ participatesIn(c,p,t))
Participates in is dissective on third argument, a temporal region [yjm-1]

Vp,q.1s (participatesIn(p,q,r) A temporalPartOf(s,r) — participatesIn(p,q,s))

If ¢ participates in p at t and p occupies temporal region r then t is part of r [kxe-1]

V¢, p,1t(occupiesTemporalRegion(p,r) A participatesIn(c,p,t) — temporalPartOf(t,r))
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LI A data exchange example 5
ROUTES INFO FLIGHT SERVES
fit arc .d.ast in dep . arr airl airl | eity coun phone
[ Y ! i 4 i - -
| i (n (2
iy (1 (1) (2) (2)
BI-'C | dest | airl | :h;rp :.'1"t:.r a:uﬁn . pop
FLIGHT GEO

Figure 1.2 Schema mapping: a proper graphical representation
1.1 A data exchange example

(1) FLIGHT(src,dest,airl,dep) —
3f# Jarr ( ROUTES(f#,src,dest)
A INFOFLIGHT(f#,dep,arr,airl))

{2) FLIGHT (city,dest,airl,dep) A GED{city,country,pepul)
—+ Zphone SERVES(airl,city,country,phone)

{3) FLIGHT(sre,city,airl,dep) A GEO(city,country,popul)
—+ Jphone SERVES({airl,city,country,phone)

Figure 1.3 A schema mapping

CONEXUS.COM

Foundations of

DATA
EXCHANGE

Marcelo Arenas, Pablo Barceld,
Leonid Libkin, and Filip Murlak

Ontologies
for data
migration
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Merged output

From “An algebraic approach to
automated information fusion”
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OLOGS
Ologs are a way to define ontologies using the branch of math called applied category theory. A number of systems implement
ologs, including Algebraic Julia, Statebox CQL, Conexus CQL, and EASIK. One key differentiator between ologs and ontologies
is that ologs allow data migration from one olog to another and so enable data integration and migration. Another is their level of
expressive power, with arbitrary Excel spreadsheets being ontologies.

RDF/OWL
The Web Ontology Language is a way to define ontologies using subject-predicate-object triples. Highly effective in the hands of
an expert and widely available, its foundations require care to be taken by users queryingit. Data.world provides RAG examples
where ontologies improve LLM performance.

DATALOG/PROLOG
Datalog one of the original ways to define simple ontologies. Widely deployed in defense applications, it has many
implementations, including on GPUs. Prolog extends datalog with additional expressive power.

CYC
Cyc Is a long-term artificial intelligence project that aims to assemble a comprehensive ontology and knowledge base that spans
basic concepts and rules about how the world works. Hoping to capture common sense knowledge, Cyc focuses on implicit
knowledge. The project began in July 1984 at MCC and was developed later by the Cycorp company. It has many clients today.

APACHE TINKERPOP
Tinker pop is commonly used to construct knowledge graphs, which, when coupled with business rules written in Gremlin/java,
allow the definition of ontologies. This line of thinking has been taken up by Tinkerpop’s creator in the mm-adt project.

MICROSOFT LAMBDA GRAPH (HYDRA)
A successor to Uber’s Dragon project, Microsoft Lambda graph focuses on representing computational knowledge graphs using
the lambda calculus, enabling new features such as type inference for graphs and active graphs that evolve on their own over
time. Like Ologs, Lambda graph allows for data migration between ontologies.

CONEXUS.COM

List available at
http://conexus.com/ontology

Ologs: categoricaldata.net

Hydra: github.com/CategoricalData/hydra

Lots of
Ontology
Systems
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Deductive databases were heavily studied in the 1980s Deductive Databasens Achierementa
- Ontologies formed the basis of RDF/OWL and Future Directions
- SO why are deductive databases and/or ontologies not popular? Jeey . Ui

Stanford University, Stanford, California

Carlo Zaniolo

1 Follow @ravitjain Don't forget to
For more such information! Save for later MCC, Austin, Texas

Types of Databases .

In the recent years, Deductive Databases have beea the focus of intense research, which has

- ‘brought dramatic advances in theory, systems and applications. A salient feature of deductive
Relational I SQL Database * MysQL databases is theis capability of supporting 3 declarative, rule-based dtyls of axprasing quaries
+ Oracle and applications on databases. As such, they find applications in disparate areas, such as
(- ——————————— * Microsoft knowledge mining from databases, and computer-aided design and manufacturing systems.
SQL Server In this paper, we briefly review the key concepts behind deductive databases and their
*+ PostgresQL newly developed enabling technology. Then, we describe current research on extending the
functionality and usability of deductive databases and on providing a aynthesis of deductive
Indexing & Relationship & Suu:t red [l Transaction sQL N
optimization Referential Integrity - support databases with procedural and object-oriented approaches.
NoSQL Database h 1 Motivations
"';2;;’""';" High There are a number of applications that have a database “flavor,” and yet are not well-addressed

by conventional database management systems. Examples of such applications are

1. Computer-aided design and manufacturing systems,

-

Columnar Database NewSQL Database e 2. Scientific databases, often involving feature detection and extraction, such as studies involving

scheme Il Column-levol Jl Coiumn-level ansactions & JIRRILE chemical structures (e.g., the human genome), or analysis of satellite data.

Evolution Compression campmsmn —— ACID + CockroachDB
- =3 - - uoDB
g - | %m% ~——— * YugaByte DB In addition to the traditional requirements of databases (such as integrity, sharing and recovery),
ton - these new applications pose demands that are not answered by conventional DBMS, such as the
following:

Spatial Database Graph Database — 2 * The need to deal with complex structures and recursively defined objects. For example, a

+ Graphoe VLSI CAD system typically allows the definitions of “cells,” which are designs having other
+ orientos

- Titan

+ RedisGraph

Topology & ——
=
Column-wise Yl - e T~

-Wise Int i -
2

:ma Object-Oriented Database Document Database
Efficient Query
Performance -

-+ ! e Ao

-

S/

Databases

SIGMOD RECORD, Vol. 19, No. 4, December 1990 75
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. —
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- | claim deductive databases are not popular for the same reason logic
programming is not popular.

- A deduction engine is like a genie, it gives the programmer whatever they ask
for, and can be hard to control.
- Asking for long life? Don't forget to specify long health...

- Logic programming is “structured editing” for data.

- Also, some logics do not specify a unique result, or even a unique row count.
- One reason RDF/OWL can be tough to use to integrate data

CONEXUS.COM

CODE URITTEN IN HASKELL
15 GUARANTEED TO HAVE
NO SIDE EFFECTS,

...[BECAUSE NO ONE
UILL EVER RUN Ir?

i

Deductive
Databases —
the bad
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- The same traits that make logic programming tough in general make it good
for manipulating ontologies.

- if there were any place to want a genie, it would be to establish a
“theory of being”

- if there were any place to want structured editing, it would be to
“preserve being”

- We must still choose our logic carefully, which I'll talk about next

- Ontologies are often sparse, making them suited to graph databases

- Ontologies often overlap, making them suited to category-theoretic formal https //github.com/categoricaldata/hydra
methods (ologs), including bi-directional transformation

http://ontologica.org

Going forward, an ontology is an “expert system” and logic programming is -
“generative Al”. | will show how to generate ontologies using logic. O n t O l O g €S

—the good
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Outline

Data integration, properly (i.e.,
rigorously, mathematically)
understood, is (deterministically
and universally) generative.

Many expert systems/ontologies
(collections of logical rules) are
data integration systems in
disguise.

Many expert
systems/ontologies are
generative Als.

Generative
symbolic Al could be more
useful than generative stochastic
Al



In artificial intelligence, an expert system is a computer system

emulating the decision-making ability of a human expert.["] Recall: ontologies
are expert systems
Expert systems are designed to solve complex problems by
reasoning through bodies of knowledge, represented mainly as if-
then rules rather than through conventional procedural code.

The first expert systems were created in the 1970s and then
proliferated in the 1980s. Expert systems were among the first truly
successful forms of artificial intelligence (Al) software.

An expert system is divided into two subsystems: the inference
engine and the knowledge base.

- The knowledge base represents facts and rules.

- The inference engine applies the rules to the known
facts to deduce new facts. EX P ert

Systems

conexus 14



From wikipedia CONEXUS.COM

There are mainly two modes for an inference engine: forward
chaining and backward chaining.

They differ by whether the inference engine is driven by the
antecedent (left hand side) or the consequent (right hand side)

of the rule. Data

In forward chaining the antecedent fires and asserts the
consequent. For example, consider the following rule:

Man (x) — Mortal (x)

In forward chaining, if Man (Socrates)is added to the
knowledge base, the rule fires and adds Mortal (Socrates) Forward

to the knowledge base. Chainin 0

conexus 15
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Forward chaining only determines a unique model for certain logics. cf “why it
is mathematically impossible to use RDF/OWL for data integration” perform poorly at dataintegration. See

for more

This is one reason why RDF/OWL can

Actor (x) and USGovernor (x) — Bodybuilder (x) or Austrian (x)

If you have an actor and US governor who is neither a bodybuilder nor
Austrian, there is no canonical choice for whether to make them a body
builder, Austrian, or both!

This is one reason spreadsheets are so

useful in data integration. See
for more

Forward
Chaining
Limitations

conexus 16


https://arxiv.org/abs/2407.19095
https://arxiv.org/abs/2209.14457

There are mainly two modes for an inference engine: forward
chaining and backward chaining.

They differ by whether the inference engine is driven by the
antecedent (left hand side) or the consequent (right hand side)
of the rule.

In backward chaining the consequent fires and asserts the
antecedent. For example, consider the following rule:

Man (x) — Mortal (x)

In backward chaining, if Mortal (Socrates) ? is asked, then
the inference engine asks if Man (Socrates)is in the
knowledge base.

From wikipedia CONEXUS.COM

Backward chaining gives
yes/no result

subgoals Id—{ Rules |

Backward
Chaining

conexus 17



LI A data exchange example 5

ROUTES INFO FLIGHT SERVES
fit arc | dest in dep arr airl airl | eity coun phone

i i ! i 4 o o 4

! (n (2]
(I (1 (1) (2} (2}
sr¢ | dest | airl | dep city coun | pop
FLIGHT GED

Figure 1.2 Schema mapping: a proper graphical representation

1.1 A data exchange example

(1) FLIGHT(src,dest,airl,dep) —
3f# Jarr ( ROUTES(f#,src,dest)
M INFOFLIGHT(f#,dep,arr, airl))

{2) FLIGHT (city,dest,airl,dep) A GED{city,country,pepul)
—+ Jphone SERVES(airl,city,country,phone)

{3) FLIGHT(sre,city,airl,dep) A GEO(city,country,popul)
—+ Jphone SERVES({airl,city,country,phone)

Figure 1.3 A schema mapping

From “Foundations of Data CONEXUS.COM

Exchange”

Claim 1

Data integration, properly
(i.e., rigorously,
mathematically)
understood, is
(deterministically and
universally) generative.

The “existential horn
clauses” shown at left
define a unique way to
generate missing
information from known
information using forward
chaining.
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Principal apd |
Data Binding Security policy s winlation &
1 " attack trace execCode (Attacker, Host, Priv) :-
- f Fre—e—— = vulExists (Host, VullD, Program),
d_:f;ﬂ:'_" Jm;r:;:;o“ Prolog Environment ‘ vulProperty (VulID, remoteExploit,
Eed L ¥ privEscalation),
:_;w.-.,[ VAL VAL 1 networkService (Host, Program, .
' gofinica—t| Scanner % Protocel, Port, Priv),
Metwark nethccess (Attacker, Host, Protocol, Port),
ko et Coafiguration malicious (Attacker) .

Fagure 1: The Mul VAL framework

Many expert systems/ontologies (collections of logical rules) are data
integration systems in disguise.

“proof by example/definition”: Many expert systems/ontologies can be
expressed in the language of ‘existential horn clauses’, the largest logic that
generates unique forward chains. This is also the logic upon which modern
data integration is based. In fact, modern data integration is based on this
logic because it is the largest logic that generates unique forward chains.

From MulVAL: A Logic-based CONEXUS.COM
Network Security Analyzer
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Page of letter combinations from 16th-century edition of Ramon Llull's Ars Magna (1517)

Claim 2
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An aside on applied category theory

— Expert systems became popular in the 80s and data integration has been understood as logic
since the 2010s, so why is “symbolic generativity” new?

— From a logic point of view, it is natural to “minimize generativity”.
— But from an algebraic view, it is natural to “maximize generativity”.

— In other words, realizing that data integration is “symbolically generative” requires a viewpoint
change from one aspect of the “computational trinity” to another (logic to algebra).

https://en.wikipedia.org/wiki/Applied_category_theory
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Ramifications of Generative Symbolic Al

— Generative symbolic Al is deterministic, but not predictable- arbitrarily complex behavior can
be encoded using existential horn clauses.

— The future is formal - expert systems can be made even more useful thanks to discoveries in
categorical algebra.

— Al systems will be composed of social-statistical-symbolic components, all generative in their
own way.

Bonus claim: Knowledge graph merge and ontology merge are generative by definition

conexus

CONEXUS.COM
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Thank you

Ryan Wisnesky

ryan@conexus.com
http://wisnesky.net
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